Monitoring of flow in the vadose zone
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Outline

O Environmental issues: the role of water and the vadose zone
d The tools of hydro-geophysics for the vadose zone

O Estimation of hydraulic parameters in the vadose zone:
a water injection experiment monitored via borehole GPR and ERT

O Conclusions and outlook
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Environmental problems
=y

Floods
Mountain slope stability
Soil/groundwater contamination
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Water in the shallow subsurface
carries energy

modifies the state of stress
carries contaminants

Environmental fluid-dynamics
(hydrology)
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Shallow geophysics
(hydro-geophysics)
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The saturated zone
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The unsaturated (vadose) zone

heterogeneities

Water migration ~ vertical

soil
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o downward transport of contaminants v I
"""" ) capillary
} fringe

o boundary with atmosphere
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o soil mechanics and capillary forces
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O The tools of hydro-geophysics for the vadose zone
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Hydrologic
model

model parameters
(hydraulic conductivity,
flow velocity, etc)

GENERAL APPROACH

simulated measured

hydrologic '_ hydrologic Geophysical
quantity { calibration ) guantity measurement
(saturation, - (saturation,

concentration) concentration)

HYDROGEOPHYSICS

HYDROGEOPHYSICAL
INVERSION

Geophysical data must be translated
into guantifafive estimates
of hydrological parameters.




measured

hydrologic Geaphysical
quantity
(saturation measurement

concentration)

Time - lapse geophysics

static aspects (geology)

dynamic aspects (hydrology)

HYDROGEOPHYSICS
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Applicable methods

Ground-Penetrating
Radar (6PR)

Electrical Resistivity
Tomography (ERT)

Hydrology - Geophysics
constitutive relationships

dielectric properties (6PR)

resistivity (ERT)

Acquisition geometry
(resolution-sensitivity issues)

cross-hole
surface-to-hole
surface-to-surface
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Ground-Penetrating Radar (GPR)

Electro-magnetic waves with frequencies in
the 10 MHz -1 GHz range.

The propagation velocity v depends only on
the dielectric constant of the medium «:

C
y=——— c=0.3 m/ns

VK

Topp et al., [1980]: 0 = (— 530 +292 k — 5.5x° + 0.043 K‘3)>< 0.0001
r'adqr' 2 dielectric Topp et al. moisture
velocity Jx= (_) constant CRIM content
(v) 14 (x) (9)




Cross-Hole GPR

a conductive surface layers are by-
passed: penetration is increased

a velocity is determined easily

Zero Offset Profile (ZOP)
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Multiple Offset Gather (MOG)
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Receiving
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Vertical Radar Profiles (VRP)
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GEOELECTRICS
Resistivity relationship with moisture content and water salinity

The classical empirical relationship linking electrical resistivity
(conductivity) to the soil moisture content is Archie's law [1942]:

. m on
Gb_0w¢ SW+GS

oy, = bulk conductivity .

o, = conductivity of water | P, = 66 Om, n=113

saturating the pores, 06

Saturation

0.4

¢ = porosity

S, = water saturation. 02 - _

o, = grain surface conductivity. . 100 200 200 400 500

p(Qm)

nand m are formation parameters
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Electrical Resistivity Tomography (ERT)
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resolution is not lost with depth

resistivity distribution is
determined accurately in 2D or 3D

local conditions around the hole are
less critical than e.g. in well logs

a tomographic inversion is needed
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Resolution issues for cross-hole GPR and ERT
(after Day-Lewis, Singha and Binley, JGR, 2005)

' Diagonal of
Diagonal of log10(R)
R (- 0l 0
0 ¢ 0.035 ;
g °f 0.03 E
S : E
9 15 0.025 9 15
0.02
20 20
GPR ERT

R = model resolution matrix
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O Estimation of hydraulic parameters in the vadose zone:
a water injection experiment monitored via borehole GPR and ERT
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Characterisation of the vadose zone

0 -
topsoil
of the Po river plain sediments: 1
the Gorgonzola test site
4 — sandy gravel
with cobbles
weakly
8 — cemented gra
gravel
Borehole A B with cobbles
. (no fines)
S 127 sandy gravel
$ VA with fines
A° |
Borehole D ‘
(cored) water table | 4 6 — gravel
’ yearly
oscillation
sandy gravel
© -oee 7.20 m ooeeseeeeee ¥-20
Borehole C 'Borehole B -
depth

(mb.g.l.)
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The Gorgonzola test site: borehole completion

litology @ PVC=90 mm
1t il
opse housing for cable
connectors
4
2m ~¢Hftr---------------1°
bentonite
@ backfilling
gk
sand/ ~3
gravel o
()

In spite of the presence of electrodes
and cables, it is possible to acquire

gravel pack good-quality cross-hole GPR data

using the same boreholes and a PulseEkko
100 system with 100 MHz antennas

15 m
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20m

H@ drillbit =152 mm
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Moisture content data from ZOP radar

100 MHz antennas - bi-weekly measurements January-April 2005
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20
0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

moisture content (-) moisture content (-) moisture content (-)
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Characterisation of the unsaturated zone in the
Sherwood Sandstone Aquifer

Post-Carboniferous
(undifferentiated)

Project Aims I o=
. - Jurassic limestones
Practical ) I

Devonian/Carboniferous-
Older cover

O To assess aquifer vulnerability —
basement

O Characterize unsaturated Eggborough

hydraulic properties of the o 3G A /Hatfield
sandstone ; 7

Methodological

To assess the value of non invasive
methods in vadose zone characterization:
O cross borehole radar

O electrical resistivity tomography
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P.I. Andrew Binley, Lancaster University
Partners: University of Leeds

Funded by: Natural Environment Research Council, UK



depth (m)

Eggborough site: lithology information from cores and gamma logs

gamma (cps)
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Moisture content data
from ZOP radar

50 MHz antennas
monthly measurements
August 1999 - September 2000
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depth (m b.g.l.)
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Nearly steady state conditions
O small variations in time
d large variations in depth




Hydrological model calibration
using geophysical data

Steady state Richards' equation (1-D)
(flow in variably saturated medium)

oz

v is pressure head (suction)
@ is moisture content
K is hydraulic conductivity

carry out repeated
(Monte Carlo) simulations
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Results:

matching
moisture
content O

define
efficiency:

2
O

—1__ Zerror
77 - 1 2
O-data

depth (m b.g.l.)
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- red line: time averaged data from

ZOP radar
black line: “best" steady state
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averaging window = 1 m
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BUT: in order to match moisture content we
must account for scale effects

This is done by taking moving window
averages of the simulated curves.

12 —

16 —

no window averaging |

depth [m bgl]

red: data
black: simulation
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Scale effects in ZOP cross-hole radar are a combination of

(1) Fresnel zone

Fow = VL [ 2

V= propagation velocity

/= central frequency

Fmae = Maximum radius of Fresnel zone
(in our case about 3 m)

(2) Critically refracted arrivals

first arrivals can be critically refracted
energy along neighbouring "fast" layers

(3) Antenna size
2 m for 50 MHz antennas

P

v
L

-
© A.M.Binley

air

fast layers




There is no
such thing as
an “optimal”

parameter set |

Efficiency (-)

We need to stress hydraulically the system
in order to characterize its parameters
if needed via artificial water injection tests

Efficiency (-)
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time after end of water injection
3h 23 h 45 h

moisture content profiles measured via GPR ZOP
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0 time after end of water injection
2 h 3h 23 h 45 h 69 h
moisture content profiles simulated using HYDRUS 1D
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depth (m bgl)

depth of centre of water mass versus time

measured via GPR ZOP

| | | | |

1 2 3 4 5
time since start of iniection (davs)

simulated via 1D
Richards’ equatiol

K,= 5. m/d
K =10. m/d

K, = 20. m/d

K, =36. m/d

(from in situ
hydraulic test)
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Depth (m)

Hatfield site, UK

3-D ERT on a controlled injection experiment

1600 litre
tracer injected
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moisture
content changes
with respect to
the pre-injection
situation

red arrows show
position of the
centre of mass
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ZOP radar between R1 and R2 boreholes
during the controlled water injection
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Vertical motion of tracer centre of mass
comparison between field data and simulations
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General conclusions

The hydrologic behavior of the vadose zone can be
pictured with accuracy and completeness

The information is maximized by fime-lapse
measurements and strong changes in moisture content

The acquisition and inversion characteristics of the
adopted hydro-geophysical methods have critical
impact (e.g., scale effect): better to use cross-hole
methods

The resolution characteristics of the adopted
methods must be understood and accounted for



Outlook

Hydraulic tests should be designed to be optimally
imaged by hydro-geophysics

Joint inversion of different methods (e.g. ERT and
GPR) shall be sought

d Integration with borehole logs shall be strengthened

1 More synergies shall be established with hydrologists

(the end users)
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