Monitoring Salt Remediation with Time-lapse Electrical Resistivity Imaging

EAGE Hydrogeophysics Workshop 04 September 2005 Palermo, Italy

> Laurence R. Bentley Mehran Gharibi

PROJECT OBJECTIVE

Develop practical methods for assessing the distribution and evolution of salt in soils and groundwater during remediation.

Moving to quantitative interpretations.

Waxman-Smits Equation

$$\sigma_{formation} = \left(\frac{1}{a\phi^{-m}S_W^{-n}}\right)(\sigma_W + BQ_V)$$

a,m,n empirical constants (geology)

S_W water saturation

 ϕ porosity (geology)

 σ_W EC of pore water

B function of σ_W

 Q_V depends on cation exchange (geology)

Our goal Changes in $\sigma_{formation}$ changes in salt concentration

SOME ISSUES

Assuming the geology remains constant

```
\sigma_{formation} changes due to:
soil moisture (S_W)
salt concentration (\sigma_W)
temperature (\sigma_W)
```

Variations in environmental conditions require corrections for

Temperature

Soil moisture

SOME ISSUES (2)

In addition to the ERI surveys:

Cores + lab tests
$$\longrightarrow \sigma_{formation}(T, S_W)$$

Tensiometer and Thermocouple installations to measure soil moisture and temperature.

Study SiteCentral Alberta, Canada

Pipeline spill and other upstream oil & gas operations

Hydrocarbons and salts released

Hydrocarbons have been remediated & land surface re-contoured

Drain system installed at ~ 2m bgl - drains to sump for deep well disposal

Phytoremediation experiment in progress

<u>.ocation map</u>

2 quasi 3-D ERI urvey zones

EM 31 conductivity

Elevated salt concentration

3 ERI surveys (July 04; Nov. 04; May 05)

ERI Surveys

- Dipole-dipole array
- 2 m electrode spacing
- 4 m line spacing
- •56 stations in each line
- 10 lines in zone 1
- •5 lines in zone 2

November Installations

- •2 thermocouple
- Installations
- 2 tensiometer
- installations
- •5 PT EC Profiles
- 3 Cores

July 2004

November 2004

ERI Inversion Zone 1

November 2004

Nov. - July

ERI Inversion Zone 2

July 2004

November 2004

Nov. - July

n situ temperature profiles

July 04 profile approximated by July 05 Measurements.

Core EC Vs Temperature

$$EC_{6^o} = EC_T \left(1 + m \left(6^o C - T \right) \right)$$

$$m = 3.0 (\sigma_m = 0.12)$$

July 2004

Nov.-July Zone1

Nov.-July Zone2

Image Difference

6° C Equivalent Difference

6° C Equivaler Difference

CONCLUSIONS

ime-lapse analysis: Need protocols to compensate or changes due to all transient environmental actors.

Quantitative correction relationships (e.g. EC vs Temperature or S_w)

Appropriate auxiliary field measurements (e.g. thermocouples, tensiometers)

OR

Incorrect, misleading or ambiguous interpretations

Acknowledgements

Funding ERAC

Site and in-kind
Imperial Oil Resources

People

Doug Rancier
Stuart Lunn
Lee-Anne Siebert
Julie Roy
Michelle Young

Tannis Such (PTAC)

